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We predict the existence of a ring-like localized solutions in wide aperture passive semiconductor quantum
well microresonators. These dark ring cavity solitons exist for positive cavity detuning in a frequency range
where nonlinear dispersive effects prevail against absorptive ones. As a rule, destabilization of these ring
solitons leads to the formation of radial asymmetric rotating solitons in externally driven optical cavities.

DOI: 10.1103/PhysRevE.75.017601 PACS number�s�: 42.65.Tg, 42.70.Nq, 42.65.Pc, 42.55.Sa

Dissipative solitons �DSs� are self-consistent localized so-
lutions of nonlinear, nonconservative systems with a substan-
tial energy exchange with their environment �1�. Unlike con-
servative solitary waves, which form families, DS properties
are completely determined by the system’s parameters. Be-
cause of their robustness, DSs are nowadays regarded as key
elements of future all-optical information processing
schemes. A wide aperture nonlinear microresonator is a
prominent example of an optical dissipative system �2–11�.
Due to the internal feedback, it can adapt to the incident field
in different ways, giving rise to multistability, patterns, and
the formation of localized structures. It has been shown that
roll and hexagonal patterns emerge due to modulational
instability �MI� of plane wave �PW� solutions in a semicon-
ductor microcavity driven by a coherent holding beam with
and without carrier injections �3–8�. In a certain parameter
domain, single constituents of this periodic pattern can be
switched off separately �8�. Moreover, such a single object,
usually termed cavity soliton �CS�, can survive indepen-
dently from the rest of the pattern, provided that an appro-
priate stable PW background exists. Cavity solitons are
localized defects that either locally increase �bright CS�
�4,9� or decrease �dark CSs� �5,8,10� the transmission of a
Fabry-Perot cavity.

While stationary CSs correspond to a fixed point in the
phase space, a limiting cycle, in general, describes a more
complicated dynamical solution that changes its shape peri-
odically in time. An example of a dynamically stable struc-
ture is the oscillating dark CS, which forms as a consequence
of CS destabilization near a Hopf bifurcation �12�. Both the
dark CS and its unstable linear mode are radial symmetric,
resulting in oscillations of the entire structure without loos-
ing its radial symmetry. On the other hand, an instability
against asymmetric deformations may evoke a dynamical
transformation of the localized structure into roll �6� or hexa-
gon �7,11� patterns. The dynamics is more complicated if a
linear mode does not exhibit radial symmetry �thus possess-
ing a topological charge� and simultaneously undergoes a
Hopf instability. As it was shown recently �13�, the initially
radial symmetric solution with or without topological charge
may transform into a rotating CS. In the pertinent system,
describing an active microresonator in the lasing regime, no
external holding beam was required. In this case, rotation can
be related to the structural topological charge because of the
wave front vortices, although a rotating “two-hump” struc-
ture without initial phase dislocation was predicted as well.

Note that the rotation or motion of CSs is always associ-
ated with a curvature of the phase front. This phase curvature
can be induced by the nonlinear phase shift of the CS’s pro-
file itself provided that a phase symmetry of the optical field
exists. A prominent example of a system, where the solutions
exhibit phase symmetry is the above-mentioned wide aper-
ture semiconductor laser �13�. However, this symmetry will
be broken in driven microresonators where the phase of the
optical field is imposed by the external coherent holding
beam. A homogeneous driving field with a flat phase pre-
vents the occurrence of a self-consistent rotation. That is
why, to the best of our knowledge, the existence of rotating
CSs has not been reported yet for externally driven nonlinear
microresonators. Note that an appropriate holding beam al-
lows for CS steering. For example, a phase or amplitude
gradient causes the CS to move �14�, while a rotation takes
place if the holding beam exhibits a doughnutlike shape �15�.

The aim of this study is to show that destabilization of the
internal linear mode of dark ring CSs lead as a rule to the
formation of rotating CSs in a driven semiconductor mi-
croresonator, even if a homogenous holding beam is applied.
Unlike droplets and dark ring CSs found in vectorial Kerr
and degenerate optical parametric oscillator cases �16�, ring
CS considered here do not require equivalent stable states to
exists.

The system we are considering is a wide aperture Fabry-
Perot micoresonator endowed with semiconductor multiple
quantum wells �MQWs� and driven by an external optical
field �see Ref. �10��. For high-finesse resonators, only one
longitudinal mode has to be taken into account and the
mean-field approach can be applied to describe the light evo-
lution. The optical nonlinearity is governed by the electron-
photon interaction inside the MQWs where the photon has an
energy slightly below the electronic band edge. Therefore,
the standard equations for the intracavity field E and carrier
density N evolution were used �see Refs. �4,8,10��.

�E

�t
= − �1 + i��E + iDE��

2 E + Eh − �i�� − ����N − 1�E ,

�N

�t
= − �NN − �N2 + DN��

2 N − �N − 1��E�2, �1�

where �=�ph��res−�0� is the normalized cavity detuning
from the resonance frequency �res; �ph=2l /v�1−�u�l� is the
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photon lifetime �1 is the effective cavity length, v is the
group velocity of light, and �u,l are the reflectivities of the
upper and lower mirrors�. DE and DN are the diffraction and
diffusion coefficients, and Eh is the holding beam amplitude.
�N is the ratio of the photon lifetime in the resonator to the
carrier recombination time, and � is the radiative recombi-
nation coefficient. In Eq. �1� the radiation-matter interaction
is described by the linearized complex MQW susceptibility
�i��−����N−1�, where the refractive part �� and the absorp-
tive part �� can be approximated by the refractive index and
absorption spectra obtained experimentally for similar MQW
structures �see Ref. �17��. For the operating wavelength
�890 nm�, the values are ��=9.44, ��=0.81, provided that the
carrier density N is normalized to its transparency value
�N0�0.8�1018 cm−3�. Typical constants can be found, for
example, in Ref. �4�. In normalized units used here, they
amount to DE=6.53, �N=5.8�10−4, �=3�10−3, where the
time is scaled to the empty cavity photon lifetime �of the
order of �ph�5 ps�, and the transverse coordinates x, y are
scaled in 1 	m. The carrier generation-recombination dy-
namics is much slower than the photon dynamics in the reso-
nator; therefore, the adiabatic elimination of the second
equation for the carrier density must not be exploited, as in
Ref. �12�.

We assume a PW holding beam, which is justified if its
width exceeds considerably the width of a typical CS
�5–10 	m�. Numerous theoretical and experimental investi-
gations �1–11� confirm that bright and dark CSs can be found
on a PW background. Here, we consider dark CSs that mani-
fest themselves as a dark area in transmission on an other-
wise bright homogeneous solution. The corresponding PW
background is the upper branch of a required bistable input-
output response curve of the wide aperture microresonator. It
is known that conventional dark CSs are situated on a branch
that bifurcates subcritically from either the limiting point of
the upper PW branch or the point where MI sets in �3,8,10�.
For the model �1�, such conventional dark CSs have a large
domain of existence for negative cavity detunings ��
0� in
the absorptive/self-defocusing regime. This is the case if the
photon energy is slightly below but close to the electronic
band-gap energy. It means that photon absorption effects are
larger or comparable to the refractive ones �in Eq. �1�
����� or ������.

Decreasing the operating frequency and, as a conse-
quence, increasing the distance to the electronic band edge,
refractive effects are the main contribution to the nonlinear
dynamics �������. Thus, the high-power beam decreases
the refractive index in the respective area. This self-
defocusing regime is preferable for the formation of dark
localized structures �see Refs. �1,2��. In this frequency range,
different patterns and dark CSs were previously identified
�5,12�. In the self-defocusing regime, the domain of exis-
tence of dark CSs extends over a positive detuning range
���0� �in Fig. 1�a��. Moreover, the dark CS exhibits a ring
shape with a bright center �Fig. 1�b��. Its circular form sug-
gests the existence of a one-dimensional �1D� structure,
which may stabilize itself in two dimensions �2D� due to
curvature effects like the stabilization of the circular domain
wall into the stable droplet �16�. However, there was no

evidence of stable 1D dark CS with the canonical profile,
i.e., a single intensity dip. Instead, it exhibits two minima
and a bright center in transverse direction �Fig. 1�c��, resem-
bling the cross-section of a 2D ring CS. Its existence domain
is distinctly larger than the corresponding domain of dark
ring CS �the area between thin lines in Fig. 1�a��. These
solitons are unstable against spatially modulated �y direction�
perturbations except a small part of their existence domain.

The dark ring CSs bifurcate with zero amplitude from the
limiting point of PW solutions �Fig. 2�a��, whereas their
stable background may be related to the upper part of the
bistable PW curve. Beyond the turning point of the CS
branch �saddle-node bifurcation�, they exist for smaller input
intensity and become stable for a sufficiently large diffusion
coefficient �curve 3 in Fig. 2�a��. Thus, ring CSs are funda-
mental solitons that bifurcate subcritically from the PW so-
lutions. We mention that higher-order structures �not consid-
ered here� are located at a curve that branches off from the
succeeding turning point. The diffusion influences consider-
ably the stability of dark ring CS. For example, the CSs
branch, which is completely unstable for zero diffusion �line
1 in Fig. 2�a��, stabilizes if diffusion is accounted for �line 3
in Fig. 2�a��. In general, the domain of soliton instability
exists for small cavity detuning and shrinks with increasing
diffusion coefficient �Fig. 1�a��. Apparently the diffusion
sweeps out any spatially modulated perturbations decreasing
the growth rate of the unstable linear eigenmodes. We men-
tion that the domain of ring CS existence decreases slightly
with increasing diffusion �Fig. 2�a��.

To determine the stability of CSs, we performed a linear
stability analysis of the stationary, radial symmetric solution.
It reveals that various discrete linear modes �bound states� of

the form �Ūm�r�exp�im�� exist, which either grow or decay

FIG. 1. �a� Domain of existence of a 2D ring CS �between thick
solid lines� and a 1D dark CS �between thin solid lines� in param-
eter space given by detuning � and amplitude of the holding beam
Eh �normalized units�. Shaded areas show the domain where dark
ring CSs are unstable for DN=2.3�10−3 �1�, DN=10−3 �2�, DN=0
�3�. The dashed line describes the boundary of the PW bistability
domain. Amplitude profiles �normalized units� of the stable 2D ring
CS for Eh=0.25 �b� and 1D dark CS for Eh=0.28 �c�, �=20,
DN=2.3�10−3.
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exponentially as exp�
t�. Here, we introduced the field and
carrier density profile of the linear eigenmode as

�Ūm�r�= ��Em�r� ,�Nm�r�� around the stationary CS solution

Ū0�r�. Instability occurs if any eigenvalue 
 has a positive
real part. Ring CSs are unstable on the upper branch because
of a growing, radial symmetric �m=0� linear mode. It has a
real-valued eigenvalue that passes zero at the turning point as
expected. The eigenvalue of another leading mode is com-
plex valued. Near the turning point, its real part is negative
�stable stationary CS� but crosses zero for smaller input in-
tensities �unstable stationary CS�; see Fig. 2�b�. Moreover,
this unstable eigenmode has a radially asymmetric shape
with topological charge m=2 that leads to a rotation �with
frequency �=Im�
� /m� rather than a CS oscillation appear-
ing slightly below Hopf bifurcation. The imaginary part
�Im�
�� decreases with decreasing holding beam amplitude
�Eh� down to a critical point where two complex conjugate
eigenvalues fuse and two real-valued ones emanate �see
Eh�0.279 in Fig. 2�b��. Note that there is no instability re-
lated to complex eigenvalues for a PW solution if the carrier
recombination time is either much larger �as in Ref. �4�� or
much smaller �as in Ref. �12�� than the photon lifetime.

The linear analysis elucidates the dynamics of stationary
solutions only for small perturbations close to the bifurcation
points. To get a complete dynamical picture, we performed
the direct numerical integration of Eqs. �1�, applying a ran-
dom noise to the unstable ring CS as an initial condition.
First, the unstable ring CS loses its radial symmetry and
starts oscillating �Fig. 3�a��. This behavior can be explained
by taking into account that two modes with complex conju-
gated eigenvalues exist, which correspond to opposite rota-
tional directions. They grow independently from the random
noise with approximately equal amplitudes exp�Re�
�t�.
Their superposition results in a “standing wave,” i.e.,
temporal oscillations with the frequency �=Im�
�. These

predictions of the linear stability analysis describe perfectly
the oscillation dynamics at the beginning of the destabiliza-
tion process �thick dashed lines in Fig. 3�. Further simula-
tions shows that nonlinearity leads to the deformation of both
unstable eigenmodes, and the energy exchange between them
gives rise to the eventual stable rotation of CS �right inset in
Fig. 3�a��. The direction of rotation is determined by the
initial perturbation of the unstable ring CS, whereas the ro-
tation frequency is about �=Im �
� /2, provided that the pa-
rameters are close to the bifurcation point. Otherwise, the
rotation can be accompanied by additional oscillations, as it

FIG. 4. �a� Minimum amplitude of the rotating CS �filled
circles� vs amplitude of the holding beam for �=10 and different
diffusion coefficients: DN=0 �1�; DN=2.3�10−3 �2�. Open circles
denote the branches of the rotating-oscillating CSs. �b� Rotation
frequency �=2� /T0 �T0 is the period of rotation expressed in �ph�
of CS vs holding beam amplitude Eh. Solid lines represent results of
the direct numerical calculation of Eq. �1�, whereas dashed lines are
the results of linear stability analysis ��=Im�
� /2�.

FIG. 2. �a� Minimum amplitude �dip� of the ring CS �solid lines:
stable solution; dashed lines: unstable ones� vs amplitude of the
holding beam for �=10 and different diffusion coefficients: DN=0
�1�; DN=2.3�10−3 �2�; DN=5�10−3 �3�. �b� Real and imaginary
parts of eigenvalue 
 of the mode with topological charge m=2 for
the ring CS �2�.

FIG. 3. Temporal dynamics �time is expressed in �ph� of the
minimum amplitude �dip� of the unstable ring CS for different dif-
fusion coefficients �a� DN=1.5�10−3; �b� DN=0. The unstable ring
CS �left inset� transforms into a rotating CS �right inset in �a�� or
rotating-oscillating CS �inset in �b��. The thick dashed lines are
results of the linear stability analysis. Parameters: �=10,
Eh=0.293.
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is illustrated in Fig. 3�b�. Further changes of parameters re-
sult in a chaotic oscillations of CSs and their eventual decay.

The dips of the rotating CS belong to the branch that
emanates supercritically from the stationary radial symmetric
solution at Hopf bifurcation �filled circles in Fig. 4�a��. A
special situation appears if the limit point of CSs and the
Hopf bifurcation coincide �line 1 Fig. 4�a��. Then the real
parts of both eigenvalues belonging to eigenmodes with dif-
ferent topological charges �namely, radial symmetric m=0
and another with m=2� become simultaneously zero. This
coincidence of two types of instabilities, Turing and Hopf,
was previously found in optical parametric oscillators with
saturable losses �18� where time-periodic patterns emerge as
a consequence of secondary bifurcation. In our case, the dy-
namically stable rotating CS emanates from the completely
unstable branch of stationary solutions in the turning point.
The rotating CS is a stable radial asymmetric localized struc-
ture in a reference frame rotating with a definite frequency.
However, it experiences a secondary bifurcation and starts to
oscillate for a smaller holding beam amplitude �open circles
in Figs. 4�a� and 3�b��.

According to the results of the linear stability analysis, the
imaginary part of the growth rate of the unstable eigenmode
increases with increasing holding beam amplitude �Fig.
2�b��. As a consequence, the rotational frequency should be-
have similarly ��=Im�
� /2� provided that the rotating CS
shape does not deviate too much from the ring CS. Direct
numerical simulations of Eq. �1� show that this statement is
valid near the bifurcation point �Fig. 4�b��.

In conclusion, we have identified fundamental dark ring
CS for positive detuning in wide aperture semiconductor mi-
croresonator driven by an external holding beam. The linear
stability analysis and extensive numerical simulations show
that close to Hopf bifurcation these ring CSs transform into
rotating CSs, even if a PW holding beam is applied. More-
over the branch of stable rotating CSs can bifurcate from a
completely unstable branch of ring CSs.

We are grateful to D. Michaelis and C. Etrich for helpful
discussions on the stability of dark CSs in semiconductor
microcavities.
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